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Abstract-Dispersion of evaporating droplets in forced low Mach number isotropic turbulence is studied 
using direct numerical simulation (DNS). The carrier phase is treated in the Eulerian frame, the droplets 
are tracked in the Lagrangian frame, and a (realistic) two-way coupling is considered. The results of the 
simulations are used to investigate the effects of the initial droplet time constant, the initial mass loading 
ratio, the initial droplet temperature, the latent heat of evaporation, the boiling temperature, and the initial 
vapor mass fraction on the droplet size, the temperature fields, and the vapor mass fraction. The DNS 
results indicate that the evaporation rate is nonlinear during the early times. The pdfs of the droplet 
diameter are skewed towards smaller droplets, however, they may be approximated as Gaussian for small 
mass loading ratios. An examination of the mean vapor mass fraction indicates that the mixture becomes 
nearly saturated at long times. The evolution of the fluctuating vapor mass fraction is investigated by 
considering the transport equation for the variance of this quantity. 0 1998 Elsevier Science Ltd. All rights 

reserved. 

1. INTRODUCTION 

One of the most versatile and efficient means for com- 
busting liquid fuels is via spray of the fuel into an 
oxidizer gas. Utilized in a variety of devices, spray 
combustion invokes the atomization of the liquid fuel 
into droplets, the evaporation of these droplets, and 
finally the chemic:al reaction of the fuel vapor with the 
oxidizer. These siages have been subjects of numerous 
investigations within the past five decades. However, 
despite significant progress in predicting the overall 
performance of the spray, there are still many unre- 
solved issues pertaining to each of the above-men- 
tioned processes. Due to lack of sufficient information, 
most of the treatments of the spray, one way or the 
other, resort to ad hoc assumptions. For instance, 
while many of these treatments involve assumptions 
regarding droplet size distribution in various regions 
of the spray, accurate information on the ‘form’ of 
these distributions is very scarce. Motivated by these 
observations, in this paper we deal with one of the 
primary, and yet unresolved, issues in the spray com- 
bustion, namely the dispersion and polydispersity of 
evaporating droplets in turbulent flows. The specific 
objective is to use the result of the numerical simu- 
lations to gain further insight into the evolution of the 
two-phase flow. The turbulence is simulated by direct 
numerical simulation (DNS) which allows us to 
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resolve all the scales of the flow without resorting to 
turbulence models. The effects of density and tem- 
perature variations are accounted for by considering 
compressible flows. The use of the droplet equations, 
which are primarily derived for steady incompressible 
flows, is justified by considering droplet sizes smaller 
than the Kolmogorov length scale and low Mach 
number flows. 

The implementation of DNS in particle-laden flows 
is pioneered by Riley and Patterson [l] and since then 
it has been used by many others [2-51; for recent 
reviews see McLaughlin [6] and Mashayek et al. [7]. 
However, most of the contributions have con- 
centrated on solid particle dispersion ; it has been only 
recently that we [8] conducted DNS of evaporating 
droplets in turbulent flows. This study has been very 
instructive in exhibiting many important features of 
polydispersity. However there are several restrictive 
simplifications invoked in this work which limits the 
generality and applicability of the DNS generated 
results. These are, specifically, the one-way coupling 
of the two phases and the assumption of incom- 
pressible flow. The chief objective of the present work 
is to expand upon the formulation of Mashayek et al. 
[8]; and relax both of the aforementioned assump- 
tions. The resulting formulation provides a more 
realistic framework for turbulent spray analysis. 

2. FORMULATION AND METHODOLOGY 

Since this is the first attempt in DNS of the evap- 
orating droplet dispersion in turbulent flows with two- 

2601 



2602 F. MASHAYEK 

B 

C, 
C, 
dd 
EI 
EK 

ET 

E,(k) 

::: 

; 
9 
h’ 
k 

Lf 
LV 
md 
Mf 
nd 

N 

Nd 
NU 

P 
Pr 
R 

Red 

Ref 
sd 

sij 

NOMENCLATURE 

(r* - Td)/3L transfer number 
specific heat of the liquid 
specific heat of the carrier phase 
droplet diameter 
internal energy of the carrier phase 
$a,~, kinetic energy of the carrier 
phase 
E, + EK total energy of the carrier 
phase 
power spectrum of the vapor mass 
fraction 
(1 +O.lSRe~~““‘)/(l +B) 
NM/~ Pr 
p* Sh 113 SC 
a( 18/pd)“‘(p* Sh/Re:.’ SC) 
a zero-mean solenoidal random force 
specific enthalpy 
wavenumber 
reference length 
latent heat of vaporization of the liquid 
mass of the droplet 
Ur/a reference Mach number 
number of droplets within the cell 
volume 
number of collocation points in each 
direction 
total number of droplets 
(2+0.6Rei.’ Pr”.33)/(1 f B) Nusselt 
number 
pressure of the carrier phase 
C&K Prandtl number 
gas constant 
Relp*dd lu* - uil droplet Reynolds 
number 
pfUfLf/p reference Reynolds number 
droplet source term [equation (15)] 
~(8u,/8xj + &4,/&J rate-of-strain 
tensor 

9’,, ,40,,, Y, coupling source/sink terms 
SC p/pF Schmidt number 
Sh 2+0.6Rej.* SC’.~~ Sherwood number 
t time 
T temperature 
TB boiling temperature of the liquid 
4 velocity of the carrier phase in 

direction xi (i = 1,2,3) 
ur 
0, 

reference velocity 
velocity of the droplet in the direction 
xi 

xi spatial coordinates, i = 1,2,3 
-V position of the droplet, i = 1,2,3 
Y vapor mass fraction. 

Greek symbols 
ratio of the specific heats of the carrier 
gas 
binary mass diffusivity coefficient 
Kronecker delta function 
node spacing 
cell volume 
&+/ax, diltatation 
dissipation rate 
thermal conductivity of the carrier 
phase 
L,/C,T, normalized latent heat of 
evaporation 
Taylor microscale of the vapor mass 
fraction 
viscosity of the carrier phase 
density 
Refpddi/18 droplet time constant 
Kolmogorov timescale 
mass loading ratio. 

Subscripts 
0 initial value (at t = 0) 
d droplet properties 
f reference properties for normalization 

:: 
carrier gas 
liquid phase 

rms root mean square 
S surface of the droplet 

; 
vapor 
vapor mass fraction. 

Superscripts 

I, 

Reynolds averaged fluctuating 
quantity 
Favre averaged fluctuating quantity 

* Carrier phase properties at the droplet 
location. 

Symbols 
0 Eulerian ensemble average over the 

number of collocation points 
(( )) Lagrangian ensemble average over the 

number of droplets. 

1 

way coupling, the problem is formulated based on plify the analysis, the buoyancy effects are not 
models and correlations which are relatively well- included. We consider the motion of a large number of 
established. Also, due to the large number of par- droplets (dispersed phase) in a turbulent flow (carrier 
ameters involved in the problem, and in order to sim- phase). The transport of the carrier phase is con- 
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sidered in the Eulerian frame; whereas the dispersed 
phase is treated in the Lagrangian manner. Also, a 
conservation equat:lon (in the Eulerian frame) is con- 
sidered for the vapor mass fraction. For simplicity, 
the vapor is assum’ad to have the same properties as 
those of the gas. In this manner, the gas-vapor mix- 
ture (hereinafter also referred to as the carrier phase 
or the fluid) is treated as one entity-the Eulerian 
continuity, momentum, and energy equations are 
solved for the gas-vapor mixture. The specific 
enthalpy of the vapor, however, is considered to be 
different than that of the gas in order to satisfy the 
first law of thermodynamics. 

2.1. Gas-vapor equations 
The carrier pha:se (composed of the gas and the 

vapor) is considered to be a compressible and New- 
tonian fluid with zero bulk viscosity, and to obey the 
perfect gas equation of state. The Eulerian forms of 
the non-dimensional continuity, momentum, and 
energy equations for the carrier phase are, respect- 
ively, expressed as : 

ap a 
z + jj$P”,) = ym 

I 

(1) 

and the conservation equation for the vapor mass 
fraction is described as : 

The equation of state is p = PT/yMj. All of the vari- 
ables are normalized by reference length, density, vel- 
ocity, and temperature scales. The coupling of the 
carrier phase with the droplets is through the terms 
Y,, Y,, and Y, which describe the mass, momentum, 
and energy exchange between the phases, respectively. 
The formulation of these terms and their calculation 
from the discrete droplet fields are described in Section 
2.2. 

With the knowledge of the velocity field, the sol- 
ution of equation (3) provides the internal energy of 
the mixture of the gas and the vapor. The vapor mass 
fraction is then used to determine the temperature of 
the mixture by using relations h, = T and h, = T+1 
for the enthalpies of the gas and the vapor, respect- 
ively. Here, the enthalpies are nondimensionalized by 
C,T, and it is assumed that the specific heat of the 

liquid is the same as that of the gas. With the ideal 
gas assumption for both the gas and the vapor, the 
change in the enthalpy upon mixing is negligible and 
the enthalpy of the mixture can be described as the 
mass-weighted sum of the enthalpies of its constitu- 
ents. After some algebraic manipulations the fol- 
lowing relation is obtained for the internal energy of 
the gas-vapor mixture : 

E 

I 
= PT+PY~Y 

Y(Y- 1Wfi 
which yields : 

T = Y(Y - lMff-4 
P 

-ylY. 

2.2. Droplet equations and coupling terms 
The liquid droplets are allowed to evaporate and 

are assumed to remain spherical with diameter smaller 
than the smallest length scale of the turbulence and to 
exhibit an empirically corrected Stokesian drag force. 
Both interior motions and rotation of the droplets are 
neglected. The density of the droplets is considered to 
be constant and much larger than the density of the 
carrier phase such that only the inertia and the drag 
forces are significant to the droplet dynamics. The 
volume fractions considered here, are in the order of 
10P3. Recent studies (e.g. Lavieville et al. [9]) indicate 
that (in case of solid particles) for volume fractions of 
this order inter-particle collisions do not significantly 
modify the two-phase flow; thus the effects of the 
droplet collisions are not considered. The radiation 
heat transfer is also neglected as the temperature vari- 
ations are not very large. The droplets are tracked 
individually in a Lagrangian manner, and the droplet 
position, velocity, temperature, and mass are deter- 
mined from the following non-dimensional equations 
[lo] : 

dX. --! = ai 
dt (7) 

$=+--T,)-$(Y,?) (9) 

and 

The non-dimensional droplet time constant, for 
Stokesian drag of a sphere, is rd = Refpddi/18. The 
droplet variables are normalized using the same refer- 
ence scales as those used for the gas phase variables. 
The function f, = (1+0.15 Rei.687)/(1 +B) in equa- 
tion (8) represents an empirical correction to the 
Stokes drag due to droplet Reynolds numbers of order 
unity and larger and is valid for droplet Reynolds 
numbers Re, < 1000 [l 11. The factor involving B is 
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due to the effects of evaporation on drag; for non- 
evaporating droplets B = 0. 

The droplets are assumed ‘lumped’, so that there is 
no temperature variation within each droplet. The 
factorf, = (Nu/3 Pr) in equation (9) represents a cor- 
relation for the convective heat transfer coefficient 
based on an empirically corrected Nusselt number 
[Nu =(2+0.6&j 5 Pu’.~~)/(I +B)] [12]. The second 
term on the right hand side (RHS) of equation (9) 
represents the change of the thermal energy due to 
phase change. The correlation fi = (p* #21/3 SC) is a 
function of an empirically corrected Sherwood 
number, Sh = 2+0.6Rej.5 SC’ 33, [12]. The vapor 
mass fraction at the droplet surface is equal to the 
vaporization pressure of the droplet (for equivalent 
molecular weights of the gas and the liquid) and obeys 
the Clausius-Clapeyron equation : 

Ys = Pvap =ev[&(l-2)] (11) 

where the boiling temperature of the liquid is assumed 
to be constant. Finally, equation (10) governs the rate 
of mass transfer from the droplet due to phase change 
which is a function of the vapor mass fraction differ- 
ence at the droplet surface, the droplet time constant, 
and the Sherwood number dependent correlation, 
f4 = n(18/p,)“.5(p*Sh/ReE.5~c). 

The source/sink terms Y’4pm, y,,, and y, appearing 
in equations (l)-(4) represent the integrated effects of 
the droplet mass, momentum, and energy exchange 
with the carrier phase. These Eulerian variables are 
calculated from the Lagrangian droplet variables by 
volume averaging the contributions from all of the 
individual droplets residing within the cell volume 
centered around each grid point. The coupling terms 
are expressed as : 

(12) 

d 1 
+ dj 2@r&v, ( >I (14) 

Equation (12) simply translates the evaporated mass 
of the droplets to a source term for the carrier phase 
continuity and the vapor mass fraction equations. 
The momentum source term given in equation (13) 
may be described as the sum of two terms: 
-(l/&V) Znd m,(du,/dt) and -(l/W) X”d(dmd/dt)v,; 
the first is the momentum transfer due to drag while 
the second represents the momentum carried to the 
carrier phase by the evaporated mass. The first term 
on the RHS of equation (14) is due to the change in 
the internal energy of the droplets. By manipulating 

equations (9) and (lo), it is easy to show that 
d(m,T,)/dt represents the exchange of the internal 
energy by convective heat transfer in addition to the 
internal energy carried to the carrier phase by the 
vapor. The last term on the RHS of equation (14) is 
due to the change in the kinetic energy of the droplets. 

The source/sink terms described by equations (12)- 
(14) reduce to those for solid particles by simply 
inserting dm,/dt = 0. The equations presented in this 
section for the Eulerian-Lagrangian system are in 
agreement with the analogous equations presented 
in the Eulerian-Eulerian framework by Jackson and 
Davidson [ 131. 

2.3. Numerical considerations 
Simulations are conducted within the domain 

0 < xi < 271. A Fourier pseudospectral [14] method 
with triply periodic boundary conditions is employed 
for the spatial representation of the carrier phase vari- 
ables and the vapor mass fraction. All calculations are 
performed in Fourier space with the exception of the 
nonlinear terms. Aliasing errors are treated by trun- 
cating energies outside of a spherical wavenumber 
shell having radius &N/3 (where N is the number of 
grid points in any direction) and time advancement 
is performed using an explicit second order accurate 
Adams-Bashforth method. To emulate the stationary 
isotropic turbulence field, a low wavenumber solen- 
oidal forcing scheme is imposed. This is implemented 
by adding energy to the large scales of the turbulence 
at a statistically constant rate [ 151. 

Once the carrier phase is simulated, the Lagrangian 
droplet equations are advanced in time using the 
second order accurate Adams-Bashforth method. In 
order to evaluate the carrier phase variables at the 
droplet location a fourth order accurate Lagrange 
polynomial interpolation scheme is employed. The 
accuracy of the interpolation scheme has been tested 
via comparisons made with the exact values calculated 
using the full spectral description [16]. Periodic 
boundary conditions are applied to the dispersed 
phase ; when a droplet leaves the domain from one 
side, it is returned to the box from the opposite side. 
Once the droplet time constant reaches below 0.1 the 
droplet is removed from the simulation to avoid 
excessive computational requirements for tracking 
very small droplets ; no droplet is substituted for the 
removed droplet. The total number of remaining 
droplets, however, is monitored to ensure that the 
Lagrangian statistics are accurate. For all of the cases 
considered in this study, the total number of droplets 
used for Lagrangian statistics is always larger than 
1.2 x 10’. Following Yeung and Pope [17], the stat- 
istical sampling error decreases as Nj-’ ; using 1.2 x 10’ 
droplets results in less than 0.3% error. 

The reference length is conveniently chosen such 
that the normalized length of the computational box 
is 27~. The reference temperature and density are the 
initial mean temperature and mean density of the car- 
rier phase, respectively. The reference Mach number 
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Table 1. Cases considered in DNS. All of the cases are with two-way coupling 
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Case T cl0 TB Yll /? Evaporation Nd %I/% 

Cl 2.5 0.25 
c2 2.5 0.5 
c3 2.5 1 
c4 6.25 1 
c5 2.5 0.25 
C6 2.5 0.5 
c7 2.5 1 
C8 6.25 1 
c9 2.5 0.5 

Cl0 2.5 0.5 
Cl1 2.5 0.5 
Cl2 2.5 0.5 

1 2 
1 2 
1 2 
1 2 
0.2 2 
0.2 2 
0.2 2 
0.2 2 
1 5 
1 2 
1 2 
1 _ 

is Mf = 1; therefore, the speed of sound based on the 
initial mean gas temperature is the reference scale 
for the velocity. For all the simulations, Rq = 500, 
Pr = SC = 0.7, r = 1.4, and pd = 1000. Direct 
numerical simulations are performed employing 643 
collocation poin1.s for the carrier phase and as many 
as 5.5 x 10’ droplets for the dispersed phase. In order 
to generate stationary initial conditions, the droplets 
are allowed to interact with the flow (as solid particles) 
for more than three eddy-turn-over times. Once all of 
the statistics reach stationary state, the time is set to 
zero and simulations of the evaporating droplets 
begin. A typical run for the case with the highest 
number of droplets has taken about 60 h of CPU time 
on a CRAY CS’O supercomputer. The mean Mach 
number is less than 0.2 for all of the cases and the 
flow is free of shock, therefore, 643 collocation points 
suffice to accurately resolve the flow field. An indica- 
tive of the resolution is the value of yk,,, (q and k,,, 
are the Kolmogorov length scale and the highest wave 
number resolved, respectively) which has been greater 
than two for all of the simulations. The time averaged 
(over a sufficiently long interval in the stationary, 
nonevaporating part of the simulations) values of the 
Taylor microsca.le Reynolds number and the eddy- 
turn-over time for various cases vary between 25 and 
35, and between 3.03 and 4.05, respectively. 

3. RESULTS 

An inspection of the formulation in Section 2 ident- 
ifies the significant parameters as : the initial droplet 
time constant (Q,J, the initial mass loading ratio (&,J, 
the initial droplet temperature (TdO), the normalized 
droplet heat of evaporation (A), the boiling tem- 
perature ( TB), and the initial vapor mass fraction (Y,,, 
which is considered to be spatially uniform). Table 1 
provides a listin,g of the cases considered to study the 
effects of these parameters. Due to the large number 
of parameters involved in the problem, a detailed 
parametric study is not possible. Therefore, we per- 
form a case study in order to compare the effects of 
the variation of each parameter. Case Cl-C4 are to 

0 0.8 
0 0.8 
0 0.8 
0 0.8 
0 0.8 
0 0.8 
0 0.8 
0 0.8 
0 0.8 
0.2 0.8 
0 2 
0 

Yes 138 713 
Yes 277 426 
Yes 554 852 
Yes 140 368 
Yes 138713 
Yes 277 426 
Yes 554 852 
Yes 140 368 
Yes 277 426 
Yes 217 426 
Yes 271426 
No 217 426 

0.73 
0.68 
0.62 
1.41 
0.73 
0.68 
0.62 
1.41 
0.68 
0.68 
0.68 
0.68 

study the effects of the mass loading ratio and the 
droplet time constant while initially droplets have the 
same temperature as that of the carrier phase, i.e. 
TdO = 1. Cases C5-C8 are analogous to Cl-C4, but 
with TdO = 0.2, in order to study the effects of the 
initial droplet temperature. The effects of the par- 
ameters that more directly influence the evaporation 
process (i.e. T,, Y0 and A), are investigated by con- 
sidering cases C9-Cll. Finally, case Cl2 without 
evaporation, is considered to assess the effects of evap- 
oration via comparison with the analogous evap- 
orating case C3. In all of the cases a full two-way 
coupling between the droplets and the carrier phase is 
considered. The case with Y, = 0.2 is initialized in 
such a way that the initial carrier phase mean density 
remains the same as in other cases (i.e. (p) = 1 at 
t = 0); the mean density of the gas alone is 0.8 for 
this case. The values of zd&. (calculated at t = 0) in 
Table 1 are useful in identifying the scales of the flow 
which are more effectively interacting with the drop- 
lets. 

The extensive data generated by DNS may be used 
to investigate the effects of the above parameters on 
various statistics of the carrier and the dispersed 
phases. In this paper, however, we focus our attention 
on some of the issues which are of more interest in 
spray modeling, namely the droplet size, the tem- 
perature, and the vapor mass fraction. The analysis 
of DNS results indicates that the amount of energy 
added to the system by external forcing is very neg- 
ligible in comparison to phase change energy. There- 
fore, the statistics presented here are not affected by 
external forcing. 

3.1. Droplet size 
In Fig. 1 results are presented of the temporal vari- 

ations of the Lagrangian-averaged values of the 
square of the droplet diameter ((dj)) as normalized 
with its initial value. The nonlinear variations of 
((di)) during the early times as portrayed in this 
figure are not in accord with the &-law [18] which is 
commonly used for modeling of evaporation of a 
single droplet. At long times, however, the rate of 
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Fig. 1. The mean droplet diameter-squared normalized with its initial value. (a) Cases ClLC4, (b) cases 

C5SC8, and (c) cases C3, and C9SCll. 

evaporation approaches asymptotic values which may 
be comparable to those predicted by the &-law. It is 
shown that with the increase of the mass loading ratio, 
the temporal variation of ((di)) becomes more non- 
linear during the early times, and the rate of evap- 
oration decreases. It is also shown that larger particles 
have smaller values for ((di))/d$,. The effect of the 
decrease of the initial droplet temperature on droplets 
sizes is realized via comparison of Fig. 1 (b) with Fig. 
l(a). Similar trends for the variations of ((dj)) with 

the mass loading ratio and the droplet time constant 
are observed, however, the evaporation rate is sig- 
nificantly decreased by the decrease of the initial drop- 
let temperature. This is in accord with physical 
intuition and is due to the decrease of the vapor mass 
fraction on the surface of the droplet as is evident 
from equation (10). The decrease in the evaporation 
rate is more visible during the early stages of evapor- 
ation (t < 3). During this period the heat transfer 
from the carrier phase is mostly consumed to increase 
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the droplets temperature. Figure l(c) indicates that 
the increase of the boiling temperature, the initial 
vapor mass fraction or the latent heat of evaporation 
results in the decrease of the evaporation rate. 

The general trends observed in Fig. 1 can be ex- 
plained by analyzing the variation of the evaporated 
mass of the droplets. Figure l(a) indicates that the 
increase of the mass loading ratio decreases the evapor- 
ated mass (relative to the initial mass) of the droplets. 
This is due to the increase of the vapor mass fraction 
as the absolute evaporated mass increases with the 
increase of the mass loading ratio. Consequently, the 
difference Y, - P which determines the rate of evapor- 
ation, decreases and the individual droplets evaporate 
with smaller rates. Figure 1 (a) also shows that for the 
same mass loading ratio, the increase of the droplet 
time constant results in the decrease of the evaporated 
mass. Equation (10) indicates that the rate of change 
of dj/d& is inversely proportional to d&. Therefore, 
with the increase of rd, the evaporation rate decreases 
and so does the evaporated mass of the droplets. The 
physical explanation is that smaller droplets have a 
larger surface to volume ratio as compared to larger 
droplets. Since the evaporated mass is proportional 
to the surface area, the smaller droplets evaporate 
more mass per unit volume. The increase of TB results 
in the decrease of Y, [equation (1 l)] and thus the 
decrease of the evaporation rate as indicated by equa- 
tion (10). This equation also indicates that by increas- 
ing the initial vapor mass fraction, the rate of evap- 
oration decreases. The increase in I can be interpreted 
as the increase ‘of the droplet latent heat of evap- 
oration which delays the evaporation process. This 
is also evident from equation (11) which indicates a 
decrease in Y,, a.nd, therefore, the evaporation rate, 
with the increase of 1. 

Comparisons of the long time values of the skewness 
in Fig. 2(a) and (b) indicate that the pdf is more 
influenced (by the decrease of the initial droplet tem- 
perature) in the case with the smallest mass loading 
ratio. 

3.2. Temperature 
The temporal variations of the mean temperature 

are shown in Fig. 3 for both phases with Tdo = 1. For 
all of the cases, a sharp decrease in the droplet mean 
temperature is observed during the early stages of 
evaporation. This is due to the initial large difference 
between the vapor mass fraction at the surface of the 
droplet (Y,) and that in the surrounding carrier phase 
(Y*). This difference is positive during the early times 
and, as equation (9) indicates, tends to decrease the 
droplet internal energy. The physical interpretation is 
that initially the droplets are not in equilibrium with 
the vapor in their surrounding carrier phase, and a 
large gradient exists for the vapor concentration 
around each droplet. This causes the droplets to evap- 
orate with high rates. Since the temperature difference 
between the two phases is small during this initial 
period the convective heat transfer from the carrier 
phase to the droplets is not very effective and the 
energy required for phase change must be provided 
by decreasing the internal energy of the droplets. Once 
the temperature difference is increased the evap- 
oration process is sustained by heat transfer from the 
carrier phase. In the meantime, evaporation decreases 
the difference between the vapor mass fraction at the 
surface of the droplet and that in the carrier phase. 
Therefore, while in the beginning evaporation is 
mainly due to the vapor concentration gradient, at 
long times it is more supported by heat transfer from 
the carrier phase. 

The polydispersity due to droplets’ evaporation is An interesting feature is associated with the mass 
examined by considering the distribution of the drop- loading ratio in Fig. 3(a). By increasing this ratio, the 
let sizes. The skewness and kurtosis of the droplet mean temperature of the carrier phase decreases in 
diameter as shown in Fig. 2 provide a quantitative early stages of evaporation, while during intermediate 
means of assessing this distribution. The profiles of and long times an opposite trend is observed. During 
the probability density functions (pdfs) are also moni- short times, the increase of the mass loading ratio 
tored at all times, but are not presented here. It increases the evaporated mass (see Fig. l(a)) and 
appears that both the skewness and the kurtosis results in the monotonic decrease of the mean carrier 
approach asymptotic values at long times. The asymp- phase temperature. At longer times, Fig. 1 (a) indicates 
totic skewness is negative for all of the cases, indi- that the rate of mass evaporation approaches small 
cating that the pdfs are skewed towards smaller drop- values. Therefore, the evaporation mechanism for 
let sizes. Figure 2(a), for large initial droplet decreasing the mean carrier phase temperature 
temperature, indicates that at small mass loading becomes somewhat ineffective at long times. On the 
ratios the pdf of the droplet size is approximately, other hand, the droplet temperature decays faster than 
Gaussian. But the pdfs deviate more from Gaussian the carrier phase temperature during the initial times, 
as the mass loading ratio increases. It is also noted resulting in the increase of the temperature difference 
that the increase of the droplet time constant results between the two phases. An inspection of Fig. 3(a) and 
in pdfs closer to Gaussian. Examinations of all the (c) reveals that the temperature difference between the 
cases indicate that &,O is more influential on the pdf two phases is larger for smaller mass loading ratios. 
than are all the other parameters. For small values of Therefore, the convection mechanism becomes effec- 
the mass loading ratio, the results are in qualitative tive for small mass loading ratios, resulting in the 
agreement with .ihose via one-way coupling in incom- decrease of the temperature of the carrier phase. The 
pressible flows [S] and confirm the important role increase of the initial droplet time constant, at the 
of the mass loading on the droplet size distribution. same initial mass loading ratio, results in higher mean 
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Fig. 2. Variations of (a) the skewness and the kurtosis of the droplet diameter for cases ClLC4, and (b) 
the skewness of the droplet diameter for cases C5-C8. 

droplet temperature as the larger droplets have larger 
heat capacity (the product of the mass of the droplet 
and its specific heat). The variation in the mean tem- 
perature of the carrier phase with the increase of the 
droplet time constant, however, is not monotonic. 
During the early times, the evaporation rate is smaller 
for larger droplets, thus, the mean carrier phase tem- 
perature increases with the increase of the droplet time 
constant. This, however, results in a larger tem- 
perature difference between the phases for larger drop- 
lets. Therefore, at long times the heat transfer between 
the larger droplets and the carrier phase is higher and 
the temperature of the carrier phase decreases below 
its level in the case with smaller droplets. The increase 
of TB, Y,, or i results in higher mean temperatures for 
both phases. This is mainly due to the decrease of the 
evaporation rate as discussed in Section 3.1. 

The effects of the decrease of the initial droplet 
temperature on the mean temperatures of both phases 
is realized by the comparison of the results shown in 
Fig. 4(a) with those in Fig. 3(a) and (c). As expected, 
the mean temperatures of both phases are significantly 
decreased with the decrease of r,,. It is noted that the 
trend of variation of the mean droplet temperature 
with the increase of the mass loading ratio is the 

opposite of what was observed in cases with Tdo = l- 
the mean droplet temperature decreases with the 
increase of the mass loading ratio for cases with 
Td,, = 0.2. This is due to the fact that when the mass 
loading ratio is smaller less heat transfer from the 
carrier phase is required to raise the droplet tempera- 
ture. Therefore, the mean temperature of the carrier 
phase is higher for cases with the smaller mass loading 
ratio, and so is the mean droplet temperature. It is 
also noted in Fig. 4(a) that at long times the tem- 
peratures of both phases approach asymptotic values 
for all of the cases. A measure of the convective heat 
transfer between the phases is the mean temperature 
difference which is depicted in Fig. 4(b). It is observed 
that the mean temperature difference decreases to 
small values within a short time after the evaporation 
begins. The rate of decrease is higher for larger mass 
loading ratios. The increase of the droplet time con- 
stant results in higher values for the mean temperature 
difference, again due to the larger heat capacity of 
larger droplets. 

From a modeling standpoint, the root mean square 
(rms) of the fluctuating temperature of both the car- 
rier and the dispersed phases are of great interest as 
the knowledge of these quantities suffices to determine 
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the mean values of the tern erature. The temporal 
variation of Tdrms == Jh is shown 
in Fig. 5 for both initial droplet temperatures. The 
rms of the fluctuating droplet temperature obtained 
from the case without evaporation is also shown in 
Fig. 5(a) for comparison. It is observed that evap- 
oration significantly increases the temperature fluc- 
tuations. All of the cases exhibit a peak value for Tdrms 
during the early stages of evaporation, followed by a 
monotonic decrease. The peak values occur faster for 
cases with smaller initial droplet temperature. A com- 
parison of Fig. 5(b) with Fig. 4(b) reveals that the 
peaks in the variations of T,,, correspond to the times 
that the mean temperature difference reaches small 
values. During the early times the rate of heat transfer 
between the two phases is large. This results in large 
variations in the ternperatures of the droplets residing 
in various regions of the flow, thus increasing the 
temperature fluctuations. The comparison of Fig. 5(a) 
and (b) indicates th.at while the trend of variations of 
T dmls with the increase of the mass loading ratio is the 
same for both initial droplet temperatures before the 
peak time, opposite trends are observed after the peak 
time. It is also noted that the increase of the droplet 
time constant delays the peak time for cases with large 

initial droplet temperature. For the case with the small 
initial droplet temperature, the increase of the droplet 
time constant results in a flattening of the peak region. 

3.3. Vapor mass fraction 
The temporal variations of the mean vapor mass 

fraction are presented in Fig. 6. The variations of this 
quantity is closely related to the variations of the 
evaporation rate. The figure indicates that for 
rdO = 2.5, the mean vapor mass fraction approaches 
asymptotic values for all the mass loading ratios. The 
reason for this behavior is that the mixture becomes 
saturated at long times. This may be verified by using 
the long time values of the mean temperature of the 
dispersed phase (from Fig. 3(c)) in equation (11). 
For instance, for the case with Q,, = 2.5 and &,O = 1, 
equation (11) yields Y, z 0.195 which is very close to 
the asymptotic value of (Y) portrayed in Fig. 6(a). 
An examination of Fig. 6(b) also indicates that (Y) 
reaches asymptotic values for all of the cases. This is 
again due to the fact that the vapor mass fraction 
in the carrier phase reaches its saturation value. In 
general, the results in Fig. 6 show that the boiling 
temperature, the latent heat of evaporation, and the 
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for cases C5-C8. 

initial vapor mass fraction are very influential on the 
amount of evaporated mass. 

The temporal variations of the rms of the vapor 
mass fraction [Y,, = J-1 are shown in 
Fig. 7. This quantity is of great interest in the modeling 
of the mean vapor mass fraction. For all of the cases, 
Y,,, starts from zero as the vapor mass fraction has a 
uniform distribution at t = 0. Shortly after the onset 
of evaporation (t < 8), the rms of the vapor mass 
fraction increases to peak values. This is due to local- 
ized production of the vapor at the droplets locations 
that results in a wide spatial variation of Y-note 
that the droplets are not uniformly distributed in the 
flowfield due to the effects of the preferential con- 
centration [5, 191. Later, turbulent stirring results in a 
more uniform distribution of the evaporated mass. 
In the meantime, the production of the vapor also 
decreases at long times. The combined effect of these 
two phenomena is a significant decay in the fluc- 
tuations of the vapor mass fraction during long times. 
Figure 7(a) shows that the rms peak occurs faster at 
higher mass loading ratios. However, at longer times 
the vapor is distributed more uniformly, due to satu- 
ration, and Y,, takes smaller values as the initial mass 
loading ratio is increased. The increase of the droplet 
size delays the occurrence of the peak and results in 

higher rms values at all times after the peak time. 
Figure 7(b) indicates that the increase of Tr,, Y,,, or I 
results in the decrease of Y,,, at all times. These trends 
can be explained by considering the variations of the 
evaporated mass shown in Fig. 1 (c). 

Figure 8 illustrates the temporal variations of the 
mean and the fluctuations of the vapor mass fraction 
for cases with small initial droplet temperature. Simi- 
lar to the results shown in Fig. 6(a) (for Td,, = l), 
Fig. 8(a) indicates that the mean vapor mass fraction 
approaches asymptotic values at long times. This is 
again due to saturation of the vapor in the carrier 
phase. However, it is noted that the asymptotic values 
in Fig. 8(a) are smaller than those in Fig. 6(a). For 
cases with TdO = 0.2, the long time droplet tem- 
perature is smaller which results in smaller values of 
Y,. It is interesting that, contrary to cases with TdO = 1, 
when the initial droplet temperature is low the mean 
vapor mass fraction decreases with the increase of the 
mass loading ratio. This is due to the decrease of 
the droplet temperature with the increase of the mass 
loading ratio as discussed earlier in Section 3.2. The 
comparisons of the rms values of the vapor mass frac- 
tion for cases with large (Fig. 7(a)) and small (Fig. 
8(b)) initial droplet temperatures, reveals that the 
peak values appear at longer times when TdO = 0.2. 
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Also, in general, Y,, values are smaller when the 
initial droplet temperatures is low. This is mainly due 
to the decrease of the production of the vapor with 
the decrease of T,,. 

Due to its importance in the prediction of com- 
bustion process, of great interest is the behavior of the 
pdf of the vapor mass fraction. To analyze the pdf, 
the temporal van.ations of the skewness and the kur- 
tosis of the lluctuating vapor mass fraction 
(Y’ = Y-(Y)) for cases with large (Fig. 9(a)) and 
small (Fig. 9(b)) initial droplet temperatures are con- 
sidered. For cases with large initial droplet tempera- 
ture, Fig. 9(a) shows that during the intermediate 
times, the deviation of the pdf from Gaussian 
increases as the mass loading ratio is increased. The 
increase of the droplet size, however, significantly 
changes the behavior of the pdf at large mass loading 
ratios and results in a pdf closer to Gaussian. At 
smaller initial droplet temperature, the pdfs are closer 
to Gaussian as compared to those from cases with 
Td,, = 1. This is particularly more visible for the case 
with rd,, = 2.5 and c&,~ = 1. In summary (for practical 
purposes) the pdf of the fluctuating vapor mass frac- 
tion is reasonably approximated by a Gaussian dis- 
tribution, when the initial droplet temperature is 
small. For large T.,,, a Gaussian approximation is 

appropriate when the droplet size is large or the mass 
loading ratio is small to moderate. Furthermore, for 
all of the cases, a Gaussian approximation seems 
reasonable at long times, when the mixture becomes 
nearly saturated. 

More insight into the evolution of the fluctuations 
of the vapor mass fraction is obtained by considering 
the transport equation for the variance of this quan- 
tity. This equation is derived similarly to that for a 
scalar [20], and for homogeneous flows reads : 

a<PY”‘*) 
-= 

at 
_-E +s 

Y d (15) 

where Y” = Y- P (with y = (p Y)/(p)) is the Favre 
averaged fluctuation of the vapor mass fraction. The 
DNS results indicate that there is only a negligible 
difference between the Favre and the Reynolds aver- 
aged fluctuations of Y. In equation (15), 

+=&(ZE) 

is the dissipation rate, and Sd indicates the source term 
due to droplet evaporation. 

The temporal variations of ey and S, are presented 
in Fig. 10 for various mass loading ratios. The figure 
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Fig. 6. The mean vapor mass fraction for (a) cases ClC4, and (b) cases C3, and C9-Cll. 

indicates that, for cases with large initial droplet tem- 
perature, shortly after the onset of evaporation the 
dissipation reaches large values and then mono- 
tonically decreases in time. During the early stages of 
evaporation, ey increases with the increase of the mass 
loading ratio while an opposite trend is observed 
during intermediate and long times. For cases with 
small initial droplet temperature, the occurrence of 
the peak value is delayed, and the dissipation exhibits 
a decreasing trend with the increase of the mass load- 
ing ratio throughout the simulation. A comparison of 
Figs 10(a) and (b) reveals that the short time values 
of the dissipation are much higher for cases with 
TdO = 1 ; at long times, however, the dissipation is 
comparable for both cases with small and large initial 
droplet temperatures. These trends are closely related 
to the variations of the evaporation rate. 

While the dissipation term in equation (15) tends 
to decrease the variance of the vapor mass fraction 
fluctuations, the source term due to the droplet evap- 
oration (S,) acts in the opposite direction as witnessed 
by positive values of this quantity illustrated in Figs. 
10(c) and (d). This term has been calculated using 
equation (15). In general, similar trends with the vari- 
ations of the mass loading ratio are observed as those 
noted for the dissipation. However, during the initial 

times S, is larger than ay, thus the variance of the 
fluctuating vapor mass fraction increases in time, in 
agreement to the results shown in Figs. 7(a) and 8(b). 
During the longer times, the rate of vapor production 
is significantly decreased. This results in the decrease 
of S, to values smaller than Ed, thus the variance 
decays. It is noted that, during the long times, both 
the dissipation and the droplet source term assume 
very small values. As a result, the fluctuations of the 
vapor mass fraction approach quasistationary states, 
while the mean values of this quantity reach saturation 
levels. 

Some insight into the structural evolution of the 
vapor mass fraction is gained by considering the evol- 
utions of the lengthscale and the power spectra of 
this quantity. The temporal variations of the Taylor 
microscale (&) of the vapor mass fraction are shown 
in Fig. 11. The microscale here is defined as 
1, = J12Y’*/(RerScsy), similarly to the microscale 
defined for a scalar [21]. Figure 1 l(a) shows that, for 
the cases with large initial droplet temperature, the 
microscale reaches stationary values after a relatively 
short time. The stationary values appear to be rather 
independent of the mass loading ratio. For cases with 
small TdO, the growth period of the microscale extends 
to longer times. In fact, for the case with the highest 
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Fig. 7. The rms of the vapor mass fraction for (a) cases Cl-C4, and (b) cases C3, and C99Cll. 

mass loading ratio, the microscale never reaches a 
stationary value during the simulation time. It is also 
noted that 1, increases with the increase of the mass 
loading ratio when TdO = 0.2. It is not clear, from the 
results of the present simulations, whether at longer 
times the values of 1, will decrease to (lower) asymp- 
totic values observed for the cases with Tdo = I. 

The power spectra E,(k) of the fluctuations of the 
vapor mass fraction are shown in Fig. 12 for the case 
with rdO = 2.5 and &,O = 0.5, for both small and large 
initial droplet temperatures. These spectra are nor- 
malized with the variance of the fluctuating vapor 
mass fraction in order to facilitate the comparisons. 
The figure shows that during the early stages of evap- 
oration, the energy is more uniformly distributed 
among large and small scales. As the rate of pro- 
duction of the vapor decreases, at longer times, the 
spectra become self similar with much of the energy 
concentrated in low wavenumbers. Therefore, it seems 
that the production term in equation (15) contributes 
more to large and moderate scales. These results are 
in qualitative agreement with the temporal evolutions 
of the Taylor microscale shown in Fig. 11. The results 
shown in Fig. 12(b) indicate that for the case with 
Td,, = 0.2, the spectra do not become self similar dur- 
ing the simulation time. However, these results do 

show that most of the energy is concentrated in low 
wavenumbers at long times. 

4. CONCLUSIONS 

Direct numerical simulations have been conducted 
of the dispersion and polydispersity of evaporating 
droplets in forced turbulence at low Mach numbers. 
The carrier phase is simulated in Eulerian frame, the 
dispersed phase is tracked in a Lagrangian manner, 
and a (realistic) two-way coupling between the carrier 
and dispersed phases is considered. The DNS results 
are used to investigate the effects of the initial droplet 
time constant, the initial mass loading ratio, the initial 
droplet temperature, the boiling temperature, the 
latent heat of evaporation, and the initial vapor mass 
fraction on the droplet size, the temperature fields, 
and the vapor mass fraction. 

The evaporation rate is nonlinear during the early 
times as the droplets are not in equilibrium with the 
vapor in their surrounding carrier phase. The increase 
of all of the above mentioned parameters, but the 
initial droplet temperature, results in the decrease of 
the evaporation rate. An opposite trend is observed 
with the increase of the initial droplet temperature. 
The pdfs of the droplet diameter are skewed towards 
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to localized productions of the vapor at the droplets 
locations. The decrease of the initial droplet tem- 
perature delays the occurrence of the peak value in 
the temporal evolution of the rms fluctuating vapor 
mass fraction. The evolution of the fluctuating vapor 
mass fraction is more closely investigated by con- 
sidering the transport equation for its variance. In 
cases with large initial droplet temperature, the Taylor 
microscale of the vapor mass fraction reaches station- 
ary values which are rather independent of the mass 
loading ratio. In cases with small initial droplet tem- 
perature, the microscale increases with the increase of 
the mass loading ratio, and does not reach stationary 
state when the mass loading ratio is large. An analysis 
of the power spectra of the vapor mass fraction fluc- 
tuation indicates that during the early stages of evap- 
oration, the energy is rather uniformly distributed 
among various scales. At longer times, most of the 
energy is concentrated at low wavenumbers and the 
spectra becomes self similar. The latter is only true 
when the initial droplet temperature is large. 
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